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Diode-pump 
 

 
 

Introduction into mathematics needed for calculus of the 

diodepump 
 

1. Introduction  

 

The diode-pump is pretended an insignificant-simple electronic circuit, 

which only consists of 5 components, but the complete description, what 

it really is in all details, is a long story. It got a big meaning in the 

1960’s in the radiation-physics, where radioactive radiation, coming as 

particles into a Geiger-counter, causing there electronic metering-pulses, 

which could be used, among others, to measure thickness of material, 

because intensity of through-coming radiation was, due to the properties 

of penetrating radiation, an exponential function of the thickness. 

Logarithmizing with the voltage-current-characteristic of diodes 

implicated a high temperature-dependence and buildups where made for 

temperature-stabilising, but problems were great and the diode-pump 

had no temperature-dependence. The diode-pump works similar as a 

water- or air-pump, pumping a medium into a tank, which has a hole at 

the bottom, where the medium is running out again. The faster you 

pump, the higher the filling-level in the tank. The both diodes of the 

diode-pump work similar as the valves of an air-pump, they are only 

pervious in one direction. The practical buildup and measurement of the 

diode-pump’s properties delivers sufficient values for the needed 

frequency-response-function in dependence of the chosen components in 

order to get a proper dimensioning. But how can it be understood mathe-

matically and got calculated specifications with optimizing linearity-

errors and can be given exact information about the measurement-error ? 

 

Extra made for the beginners, all theory starts, from far off from the 

matter, with the quadratic equation and how their roots can be found, 
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because in the quadratic equation is the origin, from where imaginary 

numbers come into the equations of electronic circuits serving there as 

symbols for the characteristic, physical properties of electronic 

components. Because the quadratic equation is the root of the 

differential-equation of the electric oscillation-circuit and the quadratic 

equation has occasionally, depending on the special values of their 

coefficients, imaginary numbers as roots, which occur then in the 

exponents of the exponential-functions of the differential-equation, what 

guides us to the periodic oscillations. And all this is extra done only to 

shed light on the notion of impedance, which is extra used to show the 

principle of conversion from a real-circuit to an equivalent-circuit, in 

order to proof, that the equivalent-circuit is justifiable to be used for all 

kinds of periodic and aperiodic signals. Because the equivalent-circuit is 

necessary to make all formulas simpler. And that is finally the completed 

pre-condition for starting to set up the calculus-equations for the diode-

pump, which is shown in the next contribution.  

The only function, which can serve as a solution of the differential 

equation is the exponential function, because e
x
 after differentiation 

remains e
x
 and falls out of the equation to make it possible, that the sum 

of the equation can get zero, while the differentiation-coefficients 

(a.e
kx

)’’= a.k
2
.e

kx
 , (b.e

kx
)’= b.k.e

kx
 …. form a quadratic equation. But 

because, the solution of a differential equation is a quadratic equation, 

the roots are occasionally imaginary numbers. If you really understand, 

what happens exactly with the charge, if 2 in series connected 

condensers are loaded up combined, you have got the precondition for 

forming an equivalent-circuit with capacities. 

 

The following mathematics tells you the story from the very beginning 

of the fundamental facts of electronics until you get at the end out of it 

the frequency-response-function of the diode-pump. To make all easier, 

parts of the complex functions are replaced and expressed by symbols 

(that means: left as they are) and equations with the symbols are reduced 

to its simplest form. The end-formula looks comparatively simple, but 

does not say much in its hidden complexity, but the calculation of 

numerical values can be simply made by writing all formulas into an 

excel-table and making a diagram of it. Today it is no longer necessary 
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to calculate out complex functions by hand. After this you can 

philosophize, why the frequency-response is approximately logarithmic 

in a certain range. I think, that it comes from the circumstance, that the 

higher the input-frequency, the less charge is loaded in per each pulse. 
 

2. Roots of the quadratic equation 
 

here as preparation for the coming ponderings the derivation is 

shown how to come to the roots of a quadratic equation, because 

they can contain imaginary numbers and they are later in the 

exponents of the differential equation causing periodic oscillations. 
 

If we have  a quadratic equation of this form: 
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3. The differential equation of the electronic oscillation-circuit as also 

shown, though, in another context on the website: 

 

 
  

http://erich-foltyn.eu\ Technique\DiffEqu1.html 
 

but here shall be shown the seamless transition 

from a time-function to an endless oscillation by 

variation of the coefficients in order to show the 

role of imaginary numbers in the electronic 

occurances. 
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4. Equivalent Circuit 
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Here you see the characteristic of the diodes. But for the simplified 

mathematical treatment one thinks the diodes as ideal switches, which 

have in switched-on-state the forward-resistance null, in the switched-

off-state infinite and the time null for switching over. It is namely 

impossible to let the exponential current-voltage-characteristics of the 

diodes flow-in into the equations as a non-linear resistance. 
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mathematical ansatz is the following:  

 

f is the pulse-frequency and the time T = 1/f is those time, after which 

the preceeding state repeats:  u(t) = u(t+T), that is the steady state, after 

which one has long enough fed-in the pulse-frequency. The charge, 

which flows in the time T from the pulse-current-source into the 

condensers C1 and C2, is the same charge, which flows in the same time 

out over the resistor R2 again. Both charges Qin und Qout are a function 

of the direct-voltage U2 at C2, so that it adjusts itself the preconditioned 

balance-state by this. 

 

Flowing-in charge: 

 
 

Flows current from the pulse-source through the in serie connected 

condensers C1 and C2 over a certain time, so is flown the same amount 

of charge into both ( Q = i . t ) . Thereafter must be the formula  

Q = C
 

. U  likewise valid for the total system as  Q = C . U  for every 

single condenser: 

 

 

21

1

21

2

21

2

21

1

221121

21

21

21222111

                                  

                                

CC

C

UU

U

CC

C

UU

U

UCUCUU
CC

CC
Q

QQQUCQUCQ

total

total

















 

 

In the factual circuit there is the condensor C2 charged up to the voltage 

U2,t=0 and we connect the discharged condensor C1 in serie and charge 

then both up to the voltage Uin . For understanding, what happens, we 

assume, that we, instead of it, feed-in  a constant current i so long into 
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the both condensors, until the sum of their voltages U1 + U2 has the 

value Uin . 
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One sees from it, that seen from the flowing-in charge it is the same, as 

if both condensers would be discharged and one puts on the voltage Uin – 

U2,t=0 at them. By the flowing-out current into the resistor R2 it looks 

certainly something different, because this is determined by U2,t=0 . 

Because an equivalent circuit for easier mathematic treatment is a 

simplification of the factual relations, but one must first examine, if their 

functions are in ful accordance with the factual circuit. By an equivalent 

circuit we assume, that it has at its output the same idle-voltage uidle and 

the same short-circuit-current iSC as the factual circuit. The idle-voltage 

will be generated in the equivalent-circuit by an equivalent-voltage-

source, which has the inner resistance null and uidle / iSC yields the inner 

resistance of the equivalent-circuit. 
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