Diode-pump

CETE

Introduction into mathematics needed for calculus of the
diodepump

1. Introduction

The diode-pump is pretended an insignificant-simple electronic circuit,
which only consists of 5 components, but the complete description, what
it really is in all details, is a long story. It got a big meaning in the
1960’s in the radiation-physics, where radioactive radiation, coming as
particles into a Geiger-counter, causing there electronic metering-pulses,
which could be used, among others, to measure thickness of material,
because intensity of through-coming radiation was, due to the properties
of penetrating radiation, an exponential function of the thickness.
Logarithmizing with the voltage-current-characteristic of diodes
implicated a high temperature-dependence and buildups where made for
temperature-stabilising, but problems were great and the diode-pump
had no temperature-dependence. The diode-pump works similar as a
water- or air-pump, pumping a medium into a tank, which has a hole at
the bottom, where the medium is running out again. The faster you
pump, the higher the filling-level in the tank. The both diodes of the
diode-pump work similar as the valves of an air-pump, they are only
pervious in one direction. The practical buildup and measurement of the
diode-pump’s properties delivers sufficient values for the needed
frequency-response-function in dependence of the chosen components in
order to get a proper dimensioning. But how can it be understood mathe-
matically and got calculated specifications with optimizing linearity-
errors and can be given exact information about the measurement-error ?

Extra made for the beginners, all theory starts, from far off from the
matter, with the quadratic equation and how their roots can be found,

Diodepump
- Page 1 of 10 -



because in the quadratic equation is the origin, from where imaginary
numbers come into the equations of electronic circuits serving there as
symbols for the characteristic, physical properties of electronic
components. Because the quadratic equation is the root of the
differential-equation of the electric oscillation-circuit and the quadratic
equation has occasionally, depending on the special values of their
coefficients, imaginary numbers as roots, which occur then in the
exponents of the exponential-functions of the differential-equation, what
guides us to the periodic oscillations. And all this is extra done only to
shed light on the notion of impedance, which is extra used to show the
principle of conversion from a real-circuit to an equivalent-circuit, in
order to proof, that the equivalent-circuit is justifiable to be used for all
kinds of periodic and aperiodic signals. Because the equivalent-circuit is
necessary to make all formulas simpler. And that is finally the completed
pre-condition for starting to set up the calculus-equations for the diode-
pump, which is shown in the next contribution.

The only function, which can serve as a solution of the differential
equation is the exponential function, because e* after differentiation
remains e* and falls out of the equation to make it possible, that the sum
of the equation can %et zero, while the differentiation-coefficients
(a.e%)°= akie = b.k.e .... form a quadratic equation. But
because, the solutlon of a dlfferentlal equation IS a quadratic equation,
the roots are occasionally imaginary numbers. If you really understand,
what happens exactly with the charge, if 2 in series connected
condensers are loaded up combined, you have got the precondition for
forming an equivalent-circuit with capacities.

The following mathematics tells you the story from the very beginning
of the fundamental facts of electronics until you get at the end out of it
the frequency-response-function of the diode-pump. To make all easier,
parts of the complex functions are replaced and expressed by symbols
(that means: left as they are) and equations with the symbols are reduced
to its simplest form. The end-formula looks comparatively simple, but
does not say much in its hidden complexity, but the calculation of
numerical values can be simply made by writing all formulas into an
excel-table and making a diagram of it. Today it is no longer necessary
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to calculate out complex functions by hand. After this you can
philosophize, why the frequency-response is approximately logarithmic
in a certain range. | think, that it comes from the circumstance, that the
higher the input-frequency, the less charge is loaded in per each pulse.

2. Roots of the quadratic equation

here as preparation for the coming ponderings the derivation is
shown how to come to the roots of a quadratic equation, because
they can contain imaginary numbers and they are later in the
exponents of the differential equation causing periodic oscillations.

If we have a quadratic equation of this form:

x>+ px+0q=0 we don't know the roots, but
for the following equation we know therootsas x, and x, ,
because for x = x, and x =X, theequation =0

(x =% ) (x=%,)=0=x* = (X, +X,)- X+ X,X,

but theparameters are different, therefor weset :

- (Xl +X2): p and XX,=q

in order toexpress x, now explicitly we go toeliminate X,
X;==P=X%

X1X2:q:_xl(p+xl) = X12+ p-%X=-q

new we add an expression to the equation to eliminate p- x; :

2 2
SUSOROR

~

() ()
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after square root of theequation :

2 2
wr(B)-x(2] -0 = w=-Pa B

because x, and X, can be swappedin this prodecure, we get :
Iy i __p [P __p_ [P
X2 >\ 2 qa =X 2+ 1 q X 5 1 q

If we have theequation ax® +bx+c =0 insteadof x*+ px+q=0

we need only todevide equation ax*+bx+c=0 bya and
replace thefactorsby p and q

x2+9x+3:0 and set p:E andq:E
a a a

a
X __Py /p_z_ :_£+ i_g:—bim
1,2 2_ 4 2a_ 4a2 a 2a

3. The differential equation of the electronic oscillation-circuit as also
shown, though, in another context on the website:

http://erich-foltyn.eu\ Technigue\DiffEqul.html

u Ug u, but here shall be shown the seamless transition
’—"—"—" from a time-function to an endless oscillation by
J AN ——3 "_ variation of the coefficients in order to show the
L R c role of imaginary numbers in the electronic
occurances.
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u, +u; +u. =0
L8 4R+ L Jidt =0 1)
TR

L-i”+R-i’+%i =0 after differentiation of 1)

a-i"+b-i"+c-i=0

# weinsert by wayof trial for i(t) theonly possiblefunction e

with the unknown constant A

=1, e
a-iy-A*-e"+b-i,-1-e* +c-i,-e* =0
(a-22+b-2+¢)-iy-e* =0 2)

al’+b-A+c=0 for L/12+R/1+%=O

_ —b++/b*-4ac

= that is
&K 2a
L LR?
~R+./R?-4— 4
A, = C_-R, R® _ CrR? _—R 147\/1_4.i.£
2 2L 2L ~ V42 412 2L RC R

that numbers 2 and 4 come from, that C and L share the same resistance R

for their time constants% and RC, that is the time, when the voltage has

decayed tothe 1 fold of theinital - value.
e
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Now it is clear, that in the equation 2) the quadratic equation makes the
entire equation alwayszerofor A, , independently from thespecial value

of e if A =4, or A, todeliver by thedifferentiation of e* theappropriate
coefficients for the quadratic equation to have theseroots 4, ,. Andas
closer described on my website:

http: /lerich - foltyn.eu/Technique/DiffEqu2.html
theinput - function of the differential equation looks anyhow like :

i=i, (e’ +e™!) etc

in case of 4% % >1 weget J-linthe exponent and as we know :

j=+-1 e” =cosp+ j-sing e“V =e(cos B+ j-sin B)

the evidence for this youcan find in the powerseries of e* and cos x, sin x

2 3

=142 X X and weset x = jy
1 2t 3l

. - \2 .
e"y=1+%+(g/|) +(J;/I) +.... doweseperatethereal and imaginary parts:

2 4 6 3 5 7
ply :[1_y_+y__y_+__)+ J(l—y—+y——y—+j
2! 41 6! i 3t 51 7!

and these are the series for cosine and sine

now we see, that if any constant £ :

if B.t=2.7 then /3:2-7;-%:2-7;- f =

therefor we can say in case of 4i L >1
RC R

-R 1_4.i.£: j-o
2L RC R
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in case of a coil and a condenser, the quotient of voltage and current is
theimpedanz Z, that is an imaginary number and right now we have
seen, how an imaginary number can playa role as a part of the physical
magnitude of electronic components.
u : 1
- = ZL = J(OL ZC =
I JaC
we need this in order to say something about theequivalent circuits

4. Equivalent Circuit

Real circuit Equivalent Circuit

. 7 = Mide
“Q o ¢
[‘]] Z éuidle isc Yidle C) Z{ e
) + 7

Uy, --- idle-voltage

Tl

iz~ ... short-cireuit-current

Zi.Z, ...impedances

Z, ... inner impedanz of the equivalent circuit's current source
Uiy - (). 9 (@)

in case of u, is alternating voltage and measuring of u,_ and iz
by instruments, the phasing between them must be considered

theimpedance Z = % =R+ jX, X Isreactance
|
ZZ P uin Z —_ uidle _ lez

Un5—5— Isc i -
Z, +7Z, Z, e Z,+7Z,
an that is the parallel - connection of Z, and Z,

Uige =
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di... depletion foyer

= Cz []Rz Uaut (t)

_;_-:——— G’I i

= Ueyice

sV

T

d ... idealised characteristic after SHOCKLEY
b ... practical characteristic

i: idl ° e clr _1

Iy, depletion —layer —current
(strongly temperatur- dependent)
u, Voltage at thedepletion layer,
positivein forward - direction

_KT temperature - voltage

—

e
(25mV by 290 degrees K)
T temperature in degrees K
e elementary charge
c 1lto?2

Here you see the characteristic of the diodes. But for the simplified
mathematical treatment one thinks the diodes as ideal switches, which
have in switched-on-state the forward-resistance null, in the switched-
off-state infinite and the time null for switching over. It is namely
impossible to let the exponential current-voltage-characteristics of the
diodes flow-in into the equations as a non-linear resistance.

The
of the (

—

O ==

principle

Toff
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mathematical ansatz is the following:

f is the pulse-frequency and the time T = 1/f is those time, after which
the preceeding state repeats: u(t) = u(t+T), that is the steady state, after
which one has long enough fed-in the pulse-frequency. The charge,
which flows in the time T from the pulse-current-source into the
condensers C; and C,, is the same charge, which flows in the same time
out over the resistor R, again. Both charges Q;, und Q are a function
of the direct-voltage U, at C,, so that it adjusts itself the preconditioned
balance-state by this.

Flowing-in charge:

Uin C)

Flows current from the pulse-source through the in serie connected
condensers C; and C, over a certain time, so is flown the same amount
of charge into both ( Q =1 . t) . Thereafter must be the formula
Q =C. U likewise valid for the total systemas Q = C . U for every
single condenser:

Q1:C1'U1 Q2:C2'U2 QtotaI:Q1:Q2
C, -C
Qtotal :ﬁ'(ul"'uz): Cl’Ul = Cz 'Uz
Ul . C2 U2 _ Cl
U +U, C +C, U +U, C +C,

In the factual circuit there is the condensor C, charged up to the voltage
U, -0 and we connect the discharged condensor C; in serie and charge
then both up to the voltage U;, . For understanding, what happens, we
assume, that we, instead of it, feed-in a constant current i so long into
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the both condensors, until the sum of their voltages U; + U, has the
value U;, .

U, =U;+U, :(U2t=o‘|'ﬂj"'u
) Cl

CZ
i.t=0Q

1 1
U -U,  =0Q|=+=
n 2,t=0 Q [CZ ClJ

One sees from it, that seen from the flowing-in charge it is the same, as
if both condensers would be discharged and one puts on the voltage U;,—
U, o at them. By the flowing-out current into the resistor R, it looks
certainly something different, because this is determined by U, .
Because an equivalent circuit for easier mathematic treatment is a
simplification of the factual relations, but one must first examine, if their
functions are in ful accordance with the factual circuit. By an equivalent
circuit we assume, that it has at its output the same idle-voltage uiqe and
the same short-circuit-current isc as the factual circuit. The idle-voltage
will be generated in the equivalent-circuit by an equivalent-voltage-
source, which has the inner resistance null and uiq / isc yields the inner
resistance of the equivalent-circuit.

Equivalent Ciruit for the Time T,y
Real Circuit Equivalent Circuit

u.-u J’j“ |_E"1—|
in u:uutC) b |_||J

Uu:uut ': t :' Uu:uut

in the equivalent circuit at the beginning of T
the condensors C1 and C2 are discharged
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